国产嘿咻一区二区三区-人妻少妇久久中文字幕一区-高清中文字幕热码在线视频-中文字幕日韩精品久久

技術文章/ article

您的位置:首頁  -  技術文章  -  微加工:材料刻蝕

微加工:材料刻蝕

更新時間:2015-08-06      瀏覽次數:5318


This page intends to present the different major techniques used in microfabrication to etch a material so that the layer you've deposited will let the shape you wanted appear. Etching is a large enough subject to write a whole encyclopedia about it. I just want to show the main differences between techniques, as well dry etching as wet etching.

Q: Etching a material: What must we think about?

Etching masks

As I've said, surface engineering consists in depositing material layers that cover the whole substrate, and then remove it so that we keep only the pattern we want.
This is definiy not magic, so, to etch only the material we want to remove, we must use a mask!

I won't discuss too much about the making of masks, because here, it would be a never ending explanation. A mask is a material layer processed so that the etching of your target will give you the patterns you want.
At the beginning, the first pattern you get on a substrate is given by lithography. This gives you a polymer mask. For some etching processes, polymers don't make good masks. So you first process another material that will become your real mask, and then you etch your target.
Complicated? OK! Let's see an exemple:

I need to make a TMAH etching. TMAH is a chemical product. I want to transfer my pattern to the silicon, that is the target material. A lithography could give me a polymer layer with the desired shape. The problem is that TMAH is able to remove compley the polymer!! I can't use it as a mask. So, I use silicon dioxide as a mask. I first make an oxide layer above silicon, on which I make my lithography. Then I etch the silicon dioxide so that it gets the pattern I want to transfer. Finally, I remove polymer and put the substrate in TMAH. TMAH etches very very slowly silicon dioxide, so my mask is efficient. Once the etching of silicon is over, I can remove oxide with... another etching step!
This shows a very important point in etching: selectivity!!

Selectivity

The term "etching" is used because the processes really etch materials. This involves physical and/or chemical reactions between an etchant, and the etched material. Of course, chemistry helps us guessing which kind of etchant will be useful to etch a certain kind of material. One of the main problem with etching, is that except for the very first layer, we would like to avoid the etchant to etch the patterns already processed. This is where we look for the selectiviy of the etching between the materials.
Now, considering there are a lot of different materials involved in microtechnology, there are a lof of techniques to etch them, you can guess people could write books just with etching ratios, to find the best possible selectivity for one etching!

Underetching

Still thinking about masks? Now let's think about a very simple physics principle:
If molecules in a liquid react with the material, there is no reason for them to react more with the bottom of the substrate rather than the side of the hole you've etched...


Underetching principle

This is called underetching. You etch under the sides of your mask. This is often a limit to the technology. If you cannot control the underetching, you cannot use the smallest pattern you've made with your lithography, but a slightly larger one. There are other reasons to like it and other phenomenas to consider in underetching study. We will see some of them in appropriate time in thoses pages.

Q:Etching: how??

There are two process classes to etch a material:

·       Wet etching: in which we use molecules in water as an etchant. The susbtrate is immersed into the solution during the necessary time.

·       Dry etching: we use other ways of getting a chemical and/or physical reaction. This is the domain of plasmas etching

Each of them brings a lot of possibilities and counterparts. Each of them is a very large subject of discussion!! So don't compare them directly, just read through their pages!

*Please contact us if there is problem using this passage* 

版權所有©2025 那諾中國有限公司 All Rights Reserved   備案號:   sitemap.xml   技術支持:化工儀器網   管理登陸
主站蜘蛛池模板: 欧美精品高清视频一区| 亚洲色图欧美激情在线观看| 成人黄色免费在线网址| 蜜桃视频二区在线观看| 日本中文字幕无线观看日本| 99久久夜色精品国产综合| 日韩欧美成人性视频| 97国产福利在线观看| 午夜中文字幕一区二区在线| 日韩性视频激情在线一区| 日韩中文字幕在线视频人妻| 熟女少妇中文自拍欧美亚洲激情| 一区二区三区啪啪啪午夜| 亚洲成人1区2区3区| 99在线成人精品视频| 日韩专区高清在线观看| 日韩精品欧美精品国产精品| 欧美日韩国产高清成人| 污片在线观看一区二区| 天天色天天操天天日天天射| 国产视频一区二区三区在线观看| 欧美国产日韩在线不卡| 日本精品一区二区三区高清| 日韩午夜福利在线视频免费播放| 91亚洲精品久久久久久| 日韩欧美综合一区二区三区四区 | 精品亚洲国产成av人片传媒| 午夜福利在线观看国产精品| av天堂资源在线地址| 国产精品日韩av一区| 国产av熟女精品综合| 国产精品久久久亚洲伦理| 日韩国产精品欧美一区二区| 欧美日韩亚洲国内综合网| av福利免费在线播放| 精品人妻久久久一区二区三区| 国产久久久成人av国产| 国产欧美精品一区在线| 亚洲天堂色图狠狠婷婷| 精品丝袜一区二区视频| 日韩人妻av在线一区|